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Minimum principles of chemical reaction coordinates are established. IRC 
(intrinsic reaction coordinate) draws the path of minimum distance from 
reactant to product. The distance is measured in the rigged configuration 
Riemannian space whose metric is determined by the distribution of the 
adiabatic potential energy. Moreover,  minimum property of the intrinsic 
principle of least action is established for the intrinsic dynamism of chemical 
reaction. Minimum principle of the path connecting intercell boundary with 
cell is also discussed. 
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1. Introduction 

Since the establishment of Eyring's absolute rate theory [1], the notion of 
"reaction coordinate" has been useful for the transparent description of the 
complex structure of chemical reaction mechanism. The chemical reaction 
process along reaction coordinate may be designated "quasistatic". The "quasi- 
static" process of chemical reaction is either exothermic or endothermic. In the 
case of exothermic process, the potential energy decreases along reaction co- 
ordinate, and in the case of endothermic process, the potential energy increases 
conversely. In both cases, the promotion of chemical reaction is measured along 
reaction coordinate by the variation of the potential energy. A unique definition 
of the reaction coordinate has been given by Fukui in 1970 [2] and designated IRC 
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(intrinsic reaction coordinate). Various methods for the detailed analysis of the 
electronic and nuclear structure of chemically reacting system along IRC have 
been developed by Fukui et al. [3-6] and Morokuma et al. [7, 8] in terms of the 
advanced theory of chemical reactivity [9]. 

In the study of chemical reaction theory, the Born-Oppenheimer adiabatic 
approximation has been indispensable. In the Born-Oppenheimer adiabatic 
approximation, the constituent nuclei of chemically reacting system are moment- 
arily clamped and then the adiabatic potential energy of the electronic state is 
obtained. If we solve the nuclear Lagrange's equation of motion on the adiabatic 
potential energy surface under the condition of momentarily clamped nuclei, then 
we have IRC as the solution. We have presented the differential geometrical study 
of chemically reacting systems, in particular, the differential equation satisfied by 
IRC [10]. The general solution of the differential equation, called the IRC 
equation, is referred to as meta-IRC; in this connection, IRC is classified as a 
particular meta~ which leads chemical reaction from reactant to product 
through transition state on the adiabatic potential energy surface [10]. 

On the other hand, dynamical studies of chemical reaction have widely developed 
in terms of classical mechanics; we follow the locus of classical trajectory of 
constituent nuclei on the adiabatic potential energy surface. For all that, it is 
certainly a matter of course that the theoretical background of the fundamental 
principle of chemical reaction dynamics is quantum mechanics. In the quantum 
mechanical treatment of chemical reaction dynamics, each classical trajectory has 
less physical reality. Quantum mechanically, every admissible dynamical state is 
described by a wavefunction. The wavefunction of a chemically reacting system 
spreads over the configuration Riemannian space; then, how reactant and product 
are to be recognized? In other words, how on the configuration Riemannian space 
should we draw the boundary in order to distinguish reactant and product? This 
problem is solved by introducing the cell structure of a chemically reacting system; 
this is based on the differential geometrical study of meta-IRC [10, 11]. The 
boundary of cell distinguishes reactant and product on the configuration 
Riemannian space. Transition state in the course of chemical reaction is then 
given as saddle point Pt,- on the intercell boundary, through which point IRC 
connects reactant cell and product cell [11]. Meta-IRC's themselves serve as the 
generalized coordinates for the description of chemical reaction dynamics in 
terms of quantum mechanics [11]. 

Now, we have presented geodesic variational principle of reaction coordinates 
confined in a cell [12], the optimum reaction coordinate being meta-IRC: this is 
referred to as the geodesic law of meta-IRC. According to the geodesic law of 
meta-IRC (see (2.13) of [12]), we can associate with the "quasistatic" process of 
chemical reaction along meta-IRC the motion of a point along a geodesic curve in 
the rigged configuration Riemannian space R* whose metric is determit~ed by the 
distribution of the adiabatic potential energy [12]. Likewise, we have presented 
the intrinsic principle of least action with respect to the intrinsic dynamism of 
chemical reaction [12]: the intrinsic dynamism represents the "quasistatic" 
nuclear motion which obeys the IRC equation. 
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In this connection, the most successful variational principle in the development of 
chemical reaction theory has been the Rayleigh-Ritz variational principle. The 
Rayleigh-Ritz variational principle guarantees for the variational treatment of 
an eigenvalue problem the minimum property of real eigenvalues (upper bound 
property of trial eigenvalues). Using this property, many approximate models of 
chemically reacting systems have been developed: for example, the independent 
particle model (concept of orbital) of many-electron problem has been a very 
straightforward, successful one. 

In the present paper, first, we shall establish 1) the minimum property of the 
geodesic law of meta-IRC as shown in Theorems G1 and G2, and using this, 2) a 
novel geodesic law of IRC having minimum property as shown in Theorems G3, 
G4, G5, and G6. Secondly, with respect to the intrinsic principle of least action 
also, the minimum property is proved as shown in Theorems A1 and A2. Thirdly, 
the minimum principle of the path connecting intercell boundary with cell is 
discussed. The novel variational principles thus established are characterized by 
their minimum property with respect to the optimum reaction coordinate. This 
property may play an important role for the application of the variational 
treatment of reaction coordinates, and further, a useful concept may be developed 
for the many-dimensional problems of chemical reaction theory. 

2. Minimum Principles of Reaction Coordinates 

2.1. Geodesic Law 

Let us consider the following "quasistatic" process in a cell. A chemical reaction 
proceeds and arrives at a point P (see Fig. 1). Let an external work be exerted on 
the system to change the potential energy by a small amount A > 0. For example, 
through the endothermic process, we arrive at a point/5+ on the equi-potential 
surface of U = U(P)+ a (see Fig. 1). Also, through the exothermic process, we 
arrive at a point P-  on the equi-potential surface of U = U(P) -A  (see Fig. 1). 
Moving/5§ and/5-  independently, we find the meta-IRC which passes P, i.e. 
P ~ P+ and P ~ P-  (see Fig. 1). In what manner will the meta-IRC be selected as 
the optimum reaction coordinate to the "quasistatic" process of this kind? Here, 

Fig. 1. Meta - IRC (P -  ~ P ~ P+) penetrates equi-potential surfaces 
S(U(P)-A), S(U(P)), S(U(P)+A). Also shown is the curve of 
virtual reaction path (/~- ~ P ~ / 6+) 

p§ p+ 
S ( u(P).z~ ) 

S (u(p) ) 

S ( U(P)-A ) 
p- ~- 
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we shall elucidate the minimum property of the geodesic law of meta-IRC and 
obtain the answer to this question: Theorems G1 and G2. 

Theorem G1. Meta-IRC draws the path of minimum distance (hereafter in the 
present paper, the distance is measured in R* and is referred to as sg; the metric 
tensor g, of R* is given by (2.11) and (2.12) of [12]) between a pair of termini of 
chemical reaction in a cell: 

Sg (virtual curve) > sg (meta-IRC). (2.1) 

Theorem G2. In a cell, meta-IRC draws the path of minimum distance from a 
point to an equi-potential surface. 

Proof of Theorem G1. Let the geodesic law of meta-IRC be represented by 

Sg = f F dO = extremum, (2.2) 

F 2 = gljdlidl j (2.3) 

where ql is the ith contravariant component of the "velocity" vector with respect 
to the variation of 0 = Sg: 

(l i= dq~/dO. (2.4) 

Using the Weierstrass E-function [13], the increment of sg with respect to the 
virtual displacement of integral path is represented by 

Asg =-- Sg (virtual curve) - Sg (meta-IRC) 

= I E dO, (2.5) 

where the path of integration goes along the curve of virtual reaction path. The 
E-function is now given by 

E = ]w] (1 - cos to), (2.6a) 

cos to = (wlgrad U)/Iwl" [grad UI, (2.6b) 

where w is the "velocity" vector along the virtual curve and to is the angle between 
w and grad U. Since 

1 -> cos to, (2.7) 

the E-function is non-negative definite: 

E->0. (2.8) 

This shows that 

Asg _> 0, (2.9) 
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where the equal sign holds only when the virtual curve becomes identical to the 
meta-IRC. This proves Theorem G1. 

Note that, by virtue of (2.20) of [12], the distance Sg of meta-IRC is measured by 
the difference of the adiabatic potential energy between a pair of termini of 
chemical reaction: 

sg = IAU[. (2.10) 

Proof  of  Theorem (72. Suppose a stable equilibrium point Ai  and the cell of Ai, 
which is referred to as Cell(AD; Ae is referred to as the center of CelI(AD [11]. 
Consider an exothermic process in Cell(A,-). (The case of an endothermic process 
is similarly proved.) We shall use reductio ad absurdum. Assume that the distance 
between P and/5- along a virtual curve is shorter than the distance between P and 
P-  along the meta-IRC: 

sg(/5- ~ P; virtual curve) < sg(P- --.) P; meta-IRC). (2.11) 

This will lead to contradiction. First, using Theorem G1 and (2.10), it is found that 
the curves of minimum distance from A~ to /5- and P-  are given by the 
corresponding meta-IRC's, and the distances are equal to each other: 

sg(Ai - ' ) / 5 - ;  meta-IRC) = sg(Ai ~ P - ;  meta-IRC) = ( U (P) - A) - U (AD. 
(2.12) 

Then, we have a pair of alternative paths from Ai to P: one is the meta-IRC via P-  
and another is the succession of 1) meta-IRC from Ai to/5-, and 2) virtual curve 
from/5- to P. Using (2.11) and (2.12), we have 

sg(A~ ~ /5- ~ P;  virtual curve) 

= sg(Ai ~/5-;  meta-IRC) + Sg(/5- ~ P; virtual curve) 

= sg(A~ ~ P - ;  meta-IRC) + sg(l 5- ~ P;  virtual curve) 

< sg(Ai ") P- ;  meta-IRC) + sg(P-  ~ P;  meta-IRC) 

= sg(Ai ~ P - - ~ P ;  meta-IRC). 

This shows that the distance from A~ to P along a virtual curve is shorter than that 
along the meta-IRC; this contradicts Theorem G1. This proves Theorem G2. 

We have examined the minimum principles of the "quasistatic" process along 
meta-IRC in a cell. We shall now examine the "quasistatic" process along IRC 
between a pair of neighboring cells, Cell(AD and Cell(A/). Then we should 
examine many curves of virtual reaction paths which pass through the intercell 
boundary, which is referred to as ((A~, Aj)) [11]. In what manner will the IRC be 
singled out as the optimum reaction coordinate from among these reaction paths 
passing through ((Ag, Aj))? We shall find the answer to this question as follows. 

Theorem G3. IRC is the path of minimum distance from the center of cell to the 
intercell boundary. 
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Theorem G4. IRC is the path of minimum distance between a pair of centers of 
neighboring cells through the intercell boundary. 

Proof of Theorems G3 and G4. A set of points which are separated from Ai by an 
equal distance A > 0 constitute the equi-potential surface of U = U(Ai) + A. Since 
the "quasistatic" process from At to ((Ai, Aj)) is endothermic, any set of points 
with A smaller than the minimum excitation energy Eex = U(Pt,) - U(Ai) have no 
intersection with ((AiAj)). If A becomes as large as Eex, then the intersection 
appears: this is nothing but the transition point Ptr. Clearly, the path of minimum 
distance from Ai to Pt,- is IRC. This proves Theorem G3, and as a corollary, we 
have Theorem G4 (see Fig. 2(a)). 

Note that the distance s~ of IRC is equal to the sum of the minimum excitation 
energies from both cells: 

sg(A,  -~ A j  ; IRC)  = ( U (Pt,) - U (Ai)  ) + ( U (Pt,) - U (Ai )  ). (2.13) 

A' 
IRC J 

\ ((Ai, Aj) ) 

Ai 
\ virtual curve 

A Si 

\ (( Ai, Aj) ) 

~ virtual curve 

Ca) (b) 

IRC ~ J  
. ~ S j  

. ~ ~ ~  ((Ai'Aj)) 

J ~ J ' ~  virtual curve 
A i Si 

( c )  

Fig. 2. IRC (Ai~Pt,.-~Aj) penetrates the 
intercell boundary ((Ai, Aj)) between a pair 
of neighboring cells, Cell(A/) and Cell(Ai). 
Also shown are the curves of virtual reac- 
tion paths: (a) from Ai to A i, (b) from Si to Sj 
(see (2.14) of text), and (e) minimum energy 
paths from Si to Sj through Ptr 
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Theorems G3 and G4 can be extended to intermediate reaction processes. 
Suppose an intermediate chemical reaction: the starting point lies on an equi- 
potential surface Si activated by a certain amount A i > 0 from Ai,  and the ending 
point lies on an equi-potential surface Sj activated by a certain amount Aj > 0 from 
A j, respectively, in such a way that 

Si = {P~IPI ~ Cell(Ai), U(P~) = U(A~) + A~ < U(Ptr)}, (2.14a) 

S i = {Pi[Pj ~ Cell(Aj), U(Pj) = U ( A  i) + A i < U(Ptr)}. (2.14b) 

Since the minimum distances from A~ to any points {P~} on S~ are measured by 
corresponding meta-IRC's and are all equal, and the same is true for the case of j, 
we have extended the versions of Theorems G3 and G4 as follows (see Fig. 2(b)). 

Theorem GS. IRC is the path of minimum distance from an equi-potential surface 
S ( U  < U(Pt,.)) of the cell to the intercell boundary. 

Theorem G6. IRC is the path of minimum distance between a pair of equi- 
potential surfaces S ( U <  U(Ptr))'s of neighboring cells through the intercell 
boundary. 

The minimum principles of IRC thus obtained open the way for the variational 
optimization of IRC: with no recourse to the prescribed procedure of finding the 
steepest descent path from the transition point Ptr. Indeed, if we use Theorems G4 
or G6 for the variational optimization of IRC, then it is unnecessary to locate Ptr in 
advance, because Pt~ is obtained in consequence of the variational calculation 
itself. Moreover, since the geodesic curve of IRC gives the shortest distance from 
reactant to product, IRC can be considered to be suited to the object of chemical 
reaction which is to proceed from reactant to product through transition state. The 
teleological nature of this kind established for IRC has not been obtained by usual 
reaction coordinate approaches of qualitative and conventional nature. 

2.2. Intrinsic Principle of  Leas t  Act ion  

In [12], it has been shown that the intrinsic dynamism of chemical reaction along 
meta-IRC is provided with the extremum property, i.e. the intrinsic principle of 
least action (see Appendix): 

A (extended action) = extremum. (2.15) 

The extremum value is measured by the distance sg of meta-IRC (see (2.10) and 
(2.20) of [12]). 

We shall show that the "action" A takes the minimum value along meta-IRC in 
conformity with the minimum character of sg along meta-IRC. 

Theorem A1 .  The "action" A takes the minimum value along meta-IRC between 
a pair of termini of chemical reaction in a cell: 

A (virtual curve) > A (meta-IRC). (2.16) 
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Theorem A2. In a cell, a meta-IRC from a point P to an equi-potential surface 
gives the path of minimum "action" from P to the surface. 

Proof of Theorems A1 and A2.  Consider an endothermic process. (The case of 
exothermic process is similarly proved.) Let the functional be represented by (see 
Appendix) 

= f L dr, (2.17) A 

i .i .j L = (~)(aljq q +A1U), (2.18) 

where q" is the ith contravariant component of the "velocity" vector with respect 
to the variation of r (AT:  accumulation time of reaction [11]): 

(1 ~ = dqi/ dr. (2.19) 

Using the Weierstrass E-function [ 13], the increment of the"action" is represent- 
ed by 

AA ~ A (virtual curve) - A (meta-IRC) 

I E dr, (2.20) 

where the path of integration goes along the virtual curve. The E-function for the 
present problem is represented by 

E = (~)lw- grad UI 2-> 0. (2.21) 

Unless w = grad U, the E-function is positive definite. This shows that 

AA _> 0, (2.22) 

where the equal sign holds only when the virtual curve becomes identical to the 
meta-IRC. This proves Theorem A1. Theorem A1 for the intrinsic principle of 
least action corresponds to Theorem G1 for the geodesic law. Likewise, as the 
counterpart of Theorem G2, we have Theorem A2. 

Furthermore, by considering r as a time-like strictly monotone increasing 
parameter which describes the path of the endothermic process from the inside of 
cell to the intercell boundary, it is easy to obtain the counterpart theorems of 
Theorems G3, G4, G5, and 06 in a similar manner. 

3. Minimum Principle of the Path Connecting Intercell Boundary with Cell 

It has been shown by Theorems (33 and (35 that IRC is the optimum reaction 
coordinate of minimum distance from the inside of cell to the intercell boundary. 
Now, we shall fix a non-equilibrium point P located on the intercell boundary 
((Ai, Ai)) in the neighborhood of P~r and examine the path of minimum distance 
from the inside of Cell(Ai) to P. Since P is a non-equilibrium point which belongs 
to the boundary of cell, we have no smooth meta-IRC which connects P with a 
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point in the cell [11]. Then, to which point should the meta-IRC which starts from 
P converge? This is Pt~. In other words, P belongs to Cell(Pt~) on the intercell 
boundary if P is located in a sufficiently small neighborhood of Ptr. We shall show 
that the path of minimum distance from P to the center A~ of Cell(AJ is the 
succession of 1) meta-IRC from P to P,,, and 2) IRC from Pt~ to A~. The 
generalized version of this is given as follows. 

Theorem. The path of minimum distance from a non-equilibrium point P on the 
intercell boundary ((Ai, Ai)) to an equi-potential surface S~ (2.14a) is the suc- 
cession of 1) meta-IRC from P to Pt, and 2) IRC from P,r to S~. This is also the path 
of minimum "action". 

Pro@ Consider a curve C connecting Cell(A/) and Cell(Aj) through the intercell 
boundary ((Ai, Aj)) (see Fig. 3). Let a series of non-equilibrium points {Pk}k=l.2 .... 
be chosen near P on C in Cell(AJ. This series is assumed to converge to P from 
the inside of Cell(Ag): 

lim Pk = P;  Pk C Cell(Ai). 
k--*oo 

Since Pk lies in the inside of Cell(Ai), it is clear that meta-IRC which starts from Pk 
converges to Si and this is the path of minimum distance from Pk to Si. In the limit 
as Pk ~ P, the meta-IRC converges to the succession of 1) meta-IRC from P to Ptr 
on ((A~, Aj)), and 2) IRC from Ptr to Si (see Fig. 3). This is the path of minimum 
distance from P to Si. Indeed, the value of the minimum distance between Pk and 
S~ is equal to the difference of the adiabatic potential energy, U(Pk)-  U(SJ;  in 
the limit as Pk ~ P, this value converges to the sum of 1) the minimum excitation 
energy from Si to Ptr as given by the minimum distance between S~ and ( (A i ,  Aj)) ,  
and 2) the minimum excitation energy from Ptr to P as given by the minimum 
distance between Pt~ and P. It is clear that this is the path of minimum "action", as 
deduced from Theorems A1 and A2. 

Thus, we have shown that a non-equilibrium point on the intercell boundary is 
connected with the cell using IRC as the path of minimum distance. 

Fig. 3. IRC intersects the intercell boundary  
((AIA/)) at the transition point  Ptr, and a 
curve C intersects ((Ai, Ai)) at a fixed point 
P. A series of points {Pk}k=x,2... on C con- 
verges to P from the inside of Cell(Ai). Also 
shown are the equi-potential  surface S~ and 
the series of me ta - IRC ' s  f rom {Pk }k = 1,2,... to 
Si. Likewise, a series of points { Q k } k = l , 2  .... 

on C converge to P from the inside of 
Cell(Ai), being accompanied by cor- 
responding me ta - IRC ' s  

IRC -. ((Ai,Aj)) \ 

/ meta-I  R C 

si 

Aj 

~K Q1 ~C 
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4. Discussion 

There supposed to be pointed out two immediate applications of the present 
theory. One is the problem of determining the optimum reaction coordinate of 
"minimum energy paths". The minimum energy paths, which pass transition 
state, are visualized as a set of curves in Fig. 2(c). These paths are special cases of 
those virtual reaction paths in Fig. 2(b); the special character of the present 
problem is that we get the same minimum excitation energy Eex (= U(Ptr)-  
U(SI), or U(Ptr) -- U(Si)) along each path as we need along IRC. We can follow a 
kind of "quasistatic" process along each path, but the solution of Lagrange's 
equation of motion under the "quasistatic" condition is uniquely given by IRC. 
Moreover IRC is found from Theorems G4 and G6 to have the teleological nature 
of providing the minimum distance from reactant to product. Thus IRC may be 
selected as the optimum reaction coordinate of "minimum energy paths". The 
variational calculation of IRC is then available using Theorems G4 or G6. 

Another problem is the determination of transition state Ptr on the adiabatic 
potential energy surface; the electronic and nuclear structure of transition state 
itself has been the major subject of the development of chemical reaction theory. 
Now let us re-examine the Theorem obtained in Sect. 3. Suppose a series of 
non-equilibrium points {Qk}k=l,2 .... be chosen on C in Cell(Ai), such that this 
series converges to P from the inside of CelI(Aj) (see Fig. 3): 

lim Qk = P ;  Qk ~ Cell(Ai). 
k~oo 

According to the Theorem, if sufficiently large k is given, then we have for k' > k 
meta-IRC's starting from Pk' or Qk' which pass sufficiently small the neighborhood 
of Ptr. In the limit as k ' ~  oo, we have Pt~ as well as P in due course. 

5. Example 

Let us take Theorem G6 and examine the minimum principle of IRC, which is the 
major result of the present theory. As a clear and simple example, we shall use the 
model potential: 

U = - x 2 q - y  2. (5.1) 

The x-axis goes along the IRC. The origin is the transition point and the y-axis 
serves as the intercell boundary which divides the configuration space into two 
cells: one cell of x=+oo and another cell of x = -0o. 

Suppose a pair of equi-potential surfaces S(U1) and S(U2) which are connected by 
virtual reaction paths of type a: 

y = ex, (5.2) 

and type b: 

y = e,  ( 5 . 3 )  
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s(u 1) s(u 2) s(u I ) 

/ 

\ 
s(u 2) 

(a) (b) 

Fig. 4. A pair of equi-potential surfaces S(U1) and S(U2) on the model potential, and the virtual 
reaction paths of (a) type a and (b) type b (see Eqs. (5.1)-(5.3) of text) 

where e is a real pa ramete r  which characterizes the individual reaction path (see 
Fig. 4(a) and 4(b), respectively). The reaction paths of type a are minimum energy 
paths as discussed in Sect. 4 (see Fig. 2(c)). Mathematically,  the minimum energy 
paths of type a are restricted to pass the transition point. On the other hand, the 
reaction paths of type b are free from such restriction and hence are supposed to 
be the simplified representatives of general reaction paths (see Fig. 2(b)). 

Let  the length of reaction path of each type measured in the rigged configuration 
space be designated as sg(e), then we have 

Sg(e) = {(1 + e 2)/(1 - e 2)} ([AUI[ + IA Uz[) (5.4) 

for type a, and 

Sg(e) = Xl~g-'~g+X2x/X'~2 + E 2 + e 2 in z; 

Xl = ~/E2+ [AUI[, (5.5) 

x==4 2+l• 
Z = (Xl +%/X12 + E2)(X2 + X/~X~ + ~2)/~2 

for type b of reaction paths, where 

AU, = U ( 0 ) -  U1, AU2 = U ( 0 ) -  U2. (5.6) 

The IRC corresponds to the path of e = 0 for both types of reaction paths, and 
satisfies the minimum principle of Theorem G6: 

s , (e)  -> sg (0). (5.7) 
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Appendix 

In this Appendix, a note on the principle of least action is given. First, using the 
metric tensor aq of the configuration Riemannian space and the time parameter  t, 
Maupertuis '  principle of least action states that the action integral 

= f 2Tdt (A1) A 

with 

2T = aij(liq j, (A2) 

dl i= dq'/ dt (A3) 

should have extremum value along real trajectory compared with that along 
virtual trajectory: 

3A = 0; along real trajectory. (A4) 

It should be noted that along virtual trajectory also the conservation of energy 
should be satisfied: 

T + U = E = const. (A5) 

The relationship of energy conservation brings about an intimate functional 
relationship between qi and q~. If we consider the condition (A5) explicitly, then 
the variational problem (A4) can be rewritten as 

8A=81  2Tdt; T = E - U  

= S f  ( T + E - U ) d t  

= 8 1 (T - U) dt. (A6) 

This is equivalent to the variational problem 

8A = 0 (A7) 

with the functional 

= I L dt, (A8) A 

where 

L = T -  U. (A9) 

Likewise, using the metric tensor a u of the configuration Riemannian space and 
the time-like parameter  ~- (AT: accumulation time of reaction [11]), the intrinsic 
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principle of least action states that the extended action integral 

= I 2Td'r (A10) A 

with 

2 T = aiigti (l i, (A11) 

(t' = dq'/ dr (A12) 

should have ex t remum value along m e t a - IR C [12]: 

6A = 0; along meta - IRC.  (A13) 

Note  that the t ime-like paramete r  ~- grows in the direction of endothermic process 
[11]; hence, the sign of A may be changed along exothermic process in order to 
ensure the chronological order of T. As the counterpart  of (A5), the functional 
relationship between qi and 0 i is represented by [12] 

T -  (�89 U = 0, (A14a) 

where hi U is Bel trami 's  differential pa ramete r  of the first kind with respect to U: 

2xI U = ai~ (OU/ Oqi)(OU/Oqi). (A14b) 

Hence,  if we consider the condition (A14) explicitly, then the variational problem 
(A13) can be rewritten as 

3 A = a f  2Tdr; T = (�89 

f ( r  + (�89 U).dr. (A15) 8 

This is equivalent to the variational problem 

8A = 0 (A16) 

with the functional 

= I L dr, (A17) A 

where 

L = T + (�89 U. (A18) 
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